\(\int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx\) [323]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 168 \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {21 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 a d}-\frac {5 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {7 \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {5 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {\sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \]

[Out]

7/5*sin(d*x+c)/a/d/sec(d*x+c)^(3/2)-sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))-5/3*sin(d*x+c)/a/d/sec(d*x+
c)^(1/2)+21/5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)
^(1/2)*sec(d*x+c)^(1/2)/a/d-5/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2
^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3317, 3904, 3872, 3854, 3856, 2719, 2720} \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {\sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}+\frac {7 \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {5 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {21 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d} \]

[In]

Int[1/((a + a*Cos[c + d*x])*Sec[c + d*x]^(7/2)),x]

[Out]

(21*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*a*d) - (5*Sqrt[Cos[c + d*x]]*EllipticF
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) + (7*Sin[c + d*x])/(5*a*d*Sec[c + d*x]^(3/2)) - (5*Sin[c + d*x])/
(3*a*d*Sqrt[Sec[c + d*x]]) - Sin[c + d*x]/(d*Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3904

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[Cot[e + f*x
]*((d*Csc[e + f*x])^n/(f*(a + b*Csc[e + f*x]))), x] - Dist[1/a^2, Int[(d*Csc[e + f*x])^n*(a*(n - 1) - b*n*Csc[
e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))} \, dx \\ & = -\frac {\sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))}-\frac {\int \frac {-\frac {7 a}{2}+\frac {5}{2} a \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{a^2} \\ & = -\frac {\sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))}-\frac {5 \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{2 a}+\frac {7 \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{2 a} \\ & = \frac {7 \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {5 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {\sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))}-\frac {5 \int \sqrt {\sec (c+d x)} \, dx}{6 a}+\frac {21 \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{10 a} \\ & = \frac {7 \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {5 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {\sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a}+\frac {\left (21 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{10 a} \\ & = \frac {21 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 a d}-\frac {5 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {7 \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {5 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {\sin (c+d x)}{d \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.22 (sec) , antiderivative size = 341, normalized size of antiderivative = 2.03 \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {8 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (63 \left (1+e^{2 i (c+d x)}\right )+63 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+25 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}-\sqrt {\sec (c+d x)} \left (18 (17+11 \cos (2 c)) \cos (d x) \csc (c)+4 \left (10 \cos (2 d x) \sin (2 c)-3 \cos (3 d x) \sin (3 c)-30 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )-99 \cos (c) \sin (d x)+10 \cos (2 c) \sin (2 d x)-3 \cos (3 c) \sin (3 d x)-30 \tan \left (\frac {c}{2}\right )\right )\right )\right )}{60 a d (1+\cos (c+d x))} \]

[In]

Integrate[1/((a + a*Cos[c + d*x])*Sec[c + d*x]^(7/2)),x]

[Out]

(Cos[(c + d*x)/2]^2*(((8*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*(63*(1 + E^((2*I)*(c + d*x
))) + 63*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x
))] + 25*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^
((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) - Sqrt[Sec[c + d*x]]*(18*(17 + 11*Cos[2*c])*Cos[d*x]
*Csc[c] + 4*(10*Cos[2*d*x]*Sin[2*c] - 3*Cos[3*d*x]*Sin[3*c] - 30*Sec[c/2]*Sec[(c + d*x)/2]*Sin[(d*x)/2] - 99*C
os[c]*Sin[d*x] + 10*Cos[2*c]*Sin[2*d*x] - 3*Cos[3*c]*Sin[3*d*x] - 30*Tan[c/2]))))/(60*a*d*(1 + Cos[c + d*x]))

Maple [A] (verified)

Time = 5.24 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.36

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (25 F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+63 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+48 \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-56 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-30 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+23 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{15 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(229\)

[In]

int(1/(a+cos(d*x+c)*a)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(25*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+63*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2)))+48*sin(1/2*d*x+1/2*c)^8-56*sin(1/2*d*x+1/2*c)^6-30*sin(1/2*d*x+1/2*c)^4+23*sin(1/2*d*x+1/2*c)^2)/a/co
s(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)
^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.29 \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {25 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 63 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (6 \, \cos \left (d x + c\right )^{3} - 4 \, \cos \left (d x + c\right )^{2} - 25 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-1/30*(25*(-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25
*(I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 63*(-I*sqrt(
2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)))
 + 63*(I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*
sin(d*x + c))) - 2*(6*cos(d*x + c)^3 - 4*cos(d*x + c)^2 - 25*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a
*d*cos(d*x + c) + a*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)*sec(d*x + c)^(7/2)), x)

Giac [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)*sec(d*x + c)^(7/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int(1/((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))),x)

[Out]

int(1/((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))), x)